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We analyze the particle-hole symmetric two-dimensional Hubbard model on a square lattice starting from
weak-to-moderate couplings by means of the field-theoretical renormalization group approach up to two-loop
order. This method is essential in order to evaluate the effect of the momentum-resolved anomalous dimension
��p� which arises in the normal phase of this model on the corresponding low-energy single-particle excita-
tions. As a result, we find important indications pointing to the existence of a non-Fermi-liquid �NFL� regime
at temperature T→0 displaying a truncated Fermi surface �FS� for a doping range exactly in between the
well-known antiferromagnetic insulating and the dx2−y2-wave singlet superconducting phases. This NFL
evolves as a function of doping into a correlated metal with a large FS before the dx2−y2-wave pairing suscep-
tibility finally produces the dominant instability in the low-energy limit.
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I. INTRODUCTION

The physical nature of underdoped cuprates both above
and below the superconducting temperature Tc is still sub-
jected to strong debate.1–3 The recent experiment of Doiron-
Leyraud et al.4 applying a magnetic field strong enough to
destroy the superconducting state established the existence of
quantum oscillations and coherent Fermi-surface �FS� pock-
ets for this regime. By contrast, earlier angle-resolved pho-
toemission experiments reported only observations of dis-
connected Fermi arcs located in the nodal regions of
momentum space.5,6 Moreover, according to both scenarios,
there exist charge pseudogaps and no quasiparticlelike exci-
tations in the corresponding antinodal sectors centered
around ��� ,0� and �0, ���. The absence of these quasipar-
ticle excitations is signaled by the vanishing of the quasipar-
ticle peak Z�p� in the spectral function at these antinodal
regions. The pseudogap behavior also reflects itself in the
underdoped superconducting phase. One manifestation of
this is the fact that the superconducting gap and the
pseudogap behave distinctively as a function of doping. The
superconducting gap located in the nodal regions centered
around ��� /2, �� /2� decreases continuously, whereas the
pseudogap continues to increase as the hole doping is re-
duced from its optimal value.7,8 Such a nodal-antinodal di-
chotomy is therefore a common trend in underdoped cu-
prates.

A minimal model for describing the dynamics of the in-
teracting electrons in these high-Tc superconductors is the
single-band two-dimensional �2D� Hubbard model.9 This
model has been investigated extensively with several nu-
merical techniques such as exact diagonalization, quantum
Monte Carlo, and the more recent quantum clusters
approaches,10,11 as well as by semianalytical functional
renormalization group �RG� methods.12–20 Several of these
works successfully obtain an antiferromagnetic phase in the
model near half-filling and the onset of a dx2−y2-wave singlet

superconducting phase away from half-filling when the tem-
perature is lowered below a critical value.10,12–14 These re-
sults therefore give further support to the point of view that
the 2D Hubbard model might indeed capture the essential
aspects of the physics displayed by those strongly correlated
materials.

On the experimental side, the insulating antiferromagnetic
phase in the hole-doped cuprates is quickly destroyed at a
very small but nevertheless nonzero doping. If we approach
this phase from a larger doping regime, this suggests that the
existing Fermi surface should shrink to zero with the corre-
sponding quasiparticle weight Z�p� becoming suppressed all
along the underlying FS at a possible quantum critical point.
It is therefore clearly important to account for the physical
effects associated with such a vanishing of Z at a nonzero
doping near half-filling. This analysis has been initiated in
recent years for the 2D Hubbard model and its extensions in
the context of the fermionic RG framework.21–24 However,
since the self-energy effects manifest themselves only at
two-loop order or beyond, in order to devise conserving
many-body approximations25 for this model, one should nec-
essarily evaluate all flow equations up to the same order of
perturbation theory. For this reason, we implement in this
work a two-loop field-theoretical RG calculation as a func-
tion of doping concentration for some important quantities in
the 2D Hubbard model.

Following previous one-loop RG calculations performed
in the 2D Hubbard model, we choose to consider here only
weak-to-moderate initial couplings. As a result, we find im-
portant indications pointing to the existence of a non-Fermi-
liquid �NFL� regime at a nonzero doping, before the
dx2−y2-wave singlet superconducting instability finally domi-
nates over the antiferromagnetic fluctuations. An important
point we wish to stress here is that this NFL regime emerges
from the nonzero momentum-resolved anomalous dimension
��p� contribution to the single-particle excitations, which
arises only at a two-loop RG level or beyond close to half-

PHYSICAL REVIEW B 78, 125114 �2008�

1098-0121/2008/78�12�/125114�8� ©2008 The American Physical Society125114-1

http://dx.doi.org/10.1103/PhysRevB.78.125114


filling. In the corresponding one-loop RG flow equations,
even if the initial values are taken to be reasonably small, the
renormalized interactions rapidly flow toward a strong-
coupling regime in the low-energy limit. This fact also indi-
cates the importance of higher-order quantum corrections to
the full description of the low-energy dynamics of the 2D
Hubbard model. Our work therefore takes seriously this ob-
servation and, for this reason, it represents a step forward in
this direction.

This paper is organized as follows. In Sec. II, we explain
the methodology employed to discuss the 2D Hubbard
model. In this part, we will choose to be very schematic
since the fermionic field-theoretical RG methodology was
already explained at length and in full detail in the context of
a simpler 2D flat FS model elsewhere.26 Our main emphasis
will be rather to highlight the final integrodifferential two-
loop RG flow equations resulting from the application of this
method to the 2D Hubbard model. In Sec. III, we move on to
the numerical solution of these RG flow equations. Lastly, in
Sec. IV, we present our final conclusions regarding our two-
loop RG calculation and we point out open issues that still
have to be addressed for the full clarification of this impor-
tant problem.

II. METHODOLOGY

We start by defining the Hamiltonian of the 2D Hubbard
model in momentum space

H = �
k,�

�k�k�
† �k� + � U

Ns
� �

p,k,q
�p+k−q↑

† �q↓
† �k↓�p↑, �2.1�

where �k�
† and �k� are the usual fermionic creation and an-

nihilation operators with momentum k and spin projection �,
t is the electronic hopping amplitude to nearest-neighbor
sites, � is the chemical potential that controls the band filling
�and, consequently, the doping parameter�, U is the local
on-site repulsive interaction, and Ns is the total number of
lattice sites. Since we will be interested only in the universal
quantities of this model, we can linearize the tight-binding-
energy dispersion �k=−2t�cos�kx�+cos�ky��−� around the
FS as �k�vF�k�n̂ . �k−kF���� with the Fermi velocity given
by vF�k�= 	��k�k 	k=kF����	=2t
sin2 kx+sin2 ky, with kF���
being the Fermi momentum, which defines the noninteract-
ing FS for a continuous doping parameter and n̂ is a unit
vector perpendicular to the FS.

The thermodynamical properties of this model can be
computed from the coherent-state Grassmann representation
of the partition function

Z =� D��̄,��e−�0
	d
�L0��̄,��+Lint��̄,���, �2.2�

where 	=1 /T. The noninteracting Lagrangian is defined in a
standard way

L0��̄,�� = �
�
�

k
�̄��k,
���
 + �k����k,
� , �2.3�

where �k=� d2k
�2��2 and the interacting Lagrangian in turn reads

Lint��̄,�� = �
�,��

�
p1

�
p2

�
p3

g�p1,p2,p3�

��̄��p1 + p2 − p3,
��̄���p3,
�����p2,
����p1,
� .

�2.4�

Equations �2.3� and �2.4� therefore define our bare quantum
field theory which is regularized in ultraviolet by restricting
the momenta to 	k	�0, where the cutoff is chosen to be
0=4t. Since this should correspond originally to the 2D
Hubbard model, we must set the bare interaction
g�p1 ,p2 ,p3� initially equal to the local interaction U. How-
ever, as we will see next, this functional dependence of the
coupling on the momenta will in fact play a crucial role in
the low-energy effective theory.

Here we perform all the calculations in the T→0 limit.
The starting point of our approach is the noninteracting FS of
the 2D Hubbard model defined by kF��� for a continuous
doping parameter. To include the effect of interactions, we
use a g-ology parametrization adapted appropriately to our
2D problem �for more details on this procedure in the con-
text of a simpler 2D flat FS model, see, e.g., Ref. 26�. By
means of a power counting analysis, one can easily verify
that the dependence of the coupling function g�p1 ,p2 ,p3� on
the components of the momenta normal to the FS is irrel-
evant in the RG sense. Therefore, we are allowed to project
these coupling functions on the FS in such a way that their
only functional dependence will come from the components
parallel to the FS of the three external momenta p1, p2, and
p3 �the fourth momentum is given naturally by momentum
conservation p4=p1+p2−p3�. In this way, we consider here
the interaction processes, which lead to singularities within
perturbation theory in the low-energy limit. They are shown
schematically in Fig. 1. These processes are the marginally
relevant couplings in our RG theory, since their contributions
become increasingly important at low energies. We neglect
here the so-called g4 processes of interacting particles be-
longing to the same FS sector. Experience with one-
dimensional systems suggests that they should not alter

FIG. 1. The g-ology parametrization for the marginally relevant
interaction processes of the 2D Hubbard model using, as a refer-
ence, the corresponding noninteracting FS at half-filling for
simplicity.
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qualitatively our results. Besides, we also neglect all margin-
ally irrelevant interactions, since these contributions are not
expected to change the universal properties of the model.

The methodology of our RG scheme follows closely the
field-theoretical method.27,28 In perturbation theory, infrared
logarithmic singularities typically emerge in the low-energy
limit at the calculation of several quantities in the model
such as the vertex corrections, the quasiparticle weight, and
the susceptibilities. We circumvent this problem by introduc-
ing appropriate counterterms at a flowing RG scale param-
eter  in such a way that all the observables—i.e., the renor-
malized quantities of the theory—remain well defined in the
low-energy limit �→0�. As we have already pointed out in
an earlier paper,26 the problem of formulating a RG theory
associated with a FS of a 2D model often requires the defi-
nition of counterterms, which are continuous functions of the
parallel momenta along the FS. In this way, we must perform
at two-loop level the following substitutions for the fermi-
onic fields:

���p,
� → Z
1/2�p����p,
� ,

�̄��p,
� → Z
1/2�p��̄��p,
� , �2.5�

where, from now on, all the momenta will correspond to the
momentum projected on the FS. Besides, Z�p� is the RG
flowing momentum-resolved quasiparticle weight and it is
naturally related in the limit of →0 to the conventional
many-body definition of the quasiparticle peak Z�p�= �1
−� Re ��� ,p� /�� 	�=0�−1. Using Eq. �2.5�, we also find that
the bare and renormalized coupling functions are related to
each order by

gi�p1,p2,p3� = �
j=1

4

Z
−1/2�pj���giR�p1,p2,p3;�

+ �giR
1loop�p1,p2,p3;�

+ �giR
2loops�p1,p2,p3;�� , �2.6�

where i=1, 2, 3, 3X, and BCS. The renormalized quantities
�labeled by the subscript R� generally depend on the RG
scale . In contrast, all the bare quantities will be denoted
here without any additional index. The functions
�giR

1loop�p1 ,p2 ,p3 ;� and �giR
2loops�p1 ,p2 ,p3 ;� represent the

counterterms necessary to regularize at one-loop and two-
loop, respectively, the four-point one-particle irreducible
�1PI� vertex corrections in each of the corresponding param-
etrized scattering channels.

Following the same strategy as it was described in full
detail in Ref. 26, we now calculate the quasiparticle weight
Z�p� at two-loop level starting from the definition of the
renormalized self-energy of the present model. The corre-
sponding Feynman diagrams of up to two-loop order are
shown in Fig. 2. The one-loop diagram �i.e., the Hartree
term� is generally independent of the external frequency �.
As a result, this contribution never renormalizes the quasi-
particle weight. In fact, it only generates a constant shift in
the chemical potential of the model that must be appropri-
ately subtracted by a counterterm in such a way that the
density of particles in the system always remains fixed dur-

ing the RG flow. By contrast, the two-loop contribution �i.e.,
the sunset diagram� is the first contribution to the self-energy,
which produces nonanalyticity as a function of the external
frequency �. For this reason, this term alone will be respon-
sible for the renormalization of the quasiparticle weight
Z�p� at this level of perturbation theory as we vary the RG
scale  toward the low-energy limit.

The momentum-resolved anomalous dimension is con-
ventionally defined by ��p�=d ln Z�p� /d. From this ex-
pression, we get

��p� =
1

8�4�
FS

dk�
FS

dq 

 + 2	�	F�p,k,q��
��2g1R�p,k + q − p,k�g1R�k,q,p�

+ 2g2R�p,k + q − p,q�g2R�k,q,k + q − p�

− g1R�p,k + q − p,k�g2R�k,q,k + q − p�

− g2R�p,k + q − p,q�g1R�k,q,p�

+ 2g3R�k,p,q�g3R�k,p,q� − g3R�k,p,q�g3R�p,k,q��

�� 1

vF�k� + vF�q��� 1

vF�q� + vF�k + q − p�� , �2.7�

where the integrals over the momenta now are simply along
the curve defined by the FS and, besides, F�p ,k ,q�=vF�k
+q−p� /vF�k�. It is interesting to note here that if we take the
1D limit of the above equation, we reproduce exactly the
well-known result for the anomalous dimension of the Lut-
tinger liquid at two-loop order as was first calculated long
ago in Ref. 29.

To derive the two-loop RG flow equations for the renor-
malized coupling functions, we must take into account the
fact that the bare theory does not know anything about the
RG scale . In other words, the bare couplings do not de-
pend on this scale, i.e., dgi�p1 ,p2 ,p3� /d=0. Therefore,
using Eq. �2.6�, we finally obtain


d

d
giR�p1,p2,p3�

=
1

2�
i=1

4

��pi�giR�p1,p2,p3� − 
d

d
�giR

1loop�p1,p2,p3�

− 
d

d
�giR

2loops�p1,p2,p3� , �2.8�

where i=1, 2, 3, 3X, and BCS. The Feynman diagrams for
the vertex corrections necessary for the determination of the
counterterm functions are shown schematically in Fig. 3.
These RG flow equations for the renormalized couplings are
in fact complicated integrodifferential equations coupled to

FIG. 2. The self-energy diagrams of up to two-loop order. The
one-loop term is the Hartree diagram and the two-loop contribution
is the so-called sunset diagram.
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one another. We will discuss their numerical solution in Sec.
III.

To investigate what are the enhanced correlations in low-
energy limit of the 2D Hubbard model, we must calculate the
linear response of the system to small external fields. There-
fore, we must add to our original Lagrangian the following
term:

Lext = �
q,p

�hSC�q��SC
�	�p,q��̄��p,
��̄	�− p + q,
�

+ hDW�q��DW
�	 �p,q��̄��p + q,
��	�p,
� + H.c.� ,

�2.9�

where hSC�q� and hDW�q� are the external fields and
�SC

�	�p ,q� and �DW
�	 �p ,q� are the response vertices for super-

conducting and density-wave orders, respectively.30 This
added term will generate new Feynman diagrams �the three-
legged vertices displayed in Fig. 4�, which will also generate
new logarithmic singularities in the low-energy limit of our
quantum field theory. Therefore, we must regularize these
divergences by defining new counterterms as follows:

�SC
�	�p,q� = Z

−1/2�p�Z
−1/2�− p + q���R,SC

�	 �p,q;�

+ ��R,SC
�	 �p,q;�� ,

�DW
�	 �p,q� = Z

−1/2�p + q�Z
−1/2�p���R,DW

�	 �p,q;�

+ ��DW
�	 �p,q;�� , �2.10�

where the Z factors, as before, come from the redefinition of
the fermionic fields at two-loop RG level displayed in Eq.
�2.5�. As a result, using again the fact that the bare response
vertices do not depend on the RG scale , we finally get


d

d
�R,SC

�	 �p,q� =
1

2
���p� + ��− p + q���R,SC

�	 �p,q�

− 
d

d
��R,SC

�	 �p,q� ,


d

d
�R,DW

�	 �p,q� =
1

2
���p + q� + ��p���R,DW

�	 �p,q�

− 
d

d
��R,DW

�	 �p,q� . �2.11�

Now, if we symmetrize the response vertices �SC
�	�p ,q� and

�DW
�	 �p ,q� with respect to their spin indices, we obtain the

following order parameters:

�SSC�p,q� = �SC
↑↓ �p,q� − �SC

↓↑ �p,q� ,

�TSC�p,q� = �SC
↑↓ �p,q� + �SC

↓↑ �p,q� ,

�SDW�p,q� = �DW
↑↑ �p,q� − �DW

↓↓ �p,q� ,

�CDW�p,q� = �DW
↑↑ �p,q� + �DW

↓↓ �p,q� , �2.12�

where SSC and TSC correspond to singlet and triplet super-
conductivity and SDW and CDW stand for charge- and spin-
density waves, respectively. Hence, using the above relations
one can readily derive the RG flow equations for each re-
sponse vertex associated with a potential instability of the
normal state toward a given ordered �i.e., symmetry-broken�
phase. The initial conditions for these RG flow equations will
determine the symmetry of the order parameter. Thus

�iR�p,q; = 0� = 1�s wave� ,

�iR�p,q; = 0� =
1

2

�cos px − cos py��dx2−y2 wave� ,

�2.13�

where i=SSC, TSC, CDW, and SDW. Once we computed
the response vertices associated with these order parameters,
we can now proceed to calculate their corresponding static
susceptibilities. From Fig. 5, one can easily verify that they
are given by

FIG. 3. Some Feynman diagrams showing the vertex corrections
up to two-loop order.

FIG. 4. The Feynman diagrams for the three-legged response
vertices associated with superconducting and density-wave orders.
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d

d
�R,SC�q = 0;� = −� dp

vF�p�
��R,SC�p,− p;��2,


d

d
�R,DW�q = Q;� = − � 

 + 2	�	�� dp

vF�p�

���R,DW�p + Q,p;��2,

�2.14�

where, to avoid cluttering up the notation too much, we sim-
ply write SC for both singlet and triplet and DW for charge-
and spin-density-wave susceptibilities. In addition, the vector
Q= �� ,�� is the commensurate antiferromagnetic wave vec-
tor.

III. NUMERICAL RESULTS

To solve all these integrodifferential RG equations nu-
merically, we will follow the standard procedure of discretiz-
ing the full FS continuum into N patches and then apply the
fourth-order Runge-Kutta method. All numerical results in
this paper will be presented for N=32. Despite this moderate
choice of number of patches, we point out that our results
show good convergence properties in the low-energy limit.

First, we focus our attention on the numerical solution of
Eq. �2.8� for the renormalized couplings as a function of the

ratio  /4t. As an initial condition for these equations, we
choose the weak-to-moderate bare interaction U=3t. Our re-
sults are displayed in Fig. 6 for the case of �=−0.05t, which
corresponds to a hole doping x of approximately x�3.4%. In
this regime, we observe that the inclusion of two-loop quan-
tum fluctuations has important consequences to the flow of
all couplings. Instead of exhibiting a divergence at a finite-
energy scale as obtained in several earlier one-loop RG
investigations,12–14 the couplings now display a tendency to
level off in the low-energy limit. This result therefore implies
that the two-loop RG corrections clearly diminish the impor-
tance of fluctuations as compared to the one-loop RG theory.
It is true, however, that several �but not all� couplings be-
come saturated at fairly strong-coupling fixed values. This is
a well-known problem in RG theory and happens as well in
other applications of this method to quantum field theories,
in which fluctuation effects are known to be very strong �the
most notorious example being the Wilson-Fisher fixed
point31,32 in �4 theory at three dimensions�. Nevertheless, the
RG results in most cases are qualitatively correct even in a
strong-coupling regime. The same is true in our case. When
one of the renormalization couplings reaches an upper bound
at the FS, the whole flow is automatically stopped in spite of
the fact that all couplings will not behave in the same way.
We test the validity of our results by analyzing several physi-
cal quantities simultaneously. Until this critical RG scale is
reached by one of the couplings, no unphysical trend is ob-
served in our calculations. In view of this, we hope that our
two-loop RG results will also capture at least qualitatively
the most essential aspects of the physics of the 2D Hubbard
model in the low-energy limit.

Next we present the results for the two-loop RG flow of
the associated momentum-resolved quasiparticle weight
Z�p�. Here Z�p� is determined for several doping regimes
as the low-energy limit is approached. The RG flows are
displayed in Fig. 7 for the special choices of momentum at
the nodal �near �� /2,� /2�� and antinodal �near �� ,0�� di-
rections. For doping levels up to a critical value �c
=−0.045t corresponding to xc�3%, we observe that the qua-
siparticle weights associated with both nodal and antinodal

FIG. 5. Feynman diagrams for the susceptibilities associated
with both singlet and triplet superconductivity and charge- and spin-
density-wave orders.
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FIG. 7. �Color online� The renormalized quasiparticle weight
Z�k� in the nodal and antinodal directions versus  /4t for initial
interaction U=3t and initial condition Z0=4t�k�=1. �a� 	�	 / t
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directions become strongly suppressed and eventually scale
down to zero at sufficiently low-energy scales. This result in
fact holds for all points of the underlying FS of the system.
From the two-loop RG flows of the several order-parameter
susceptibilities displayed in Figs. 8�a� and 8�b�, we observe
that the s SDW is by far the dominant instability at these low
doping values. From these two results we can infer that, for
	�	 / t�0.045, the Fermi surface �if we define it simply as the
locus in k space that exhibits a discontinuous jump in the
momentum distribution function� is completely smeared out
by interactions and the resulting ground state should be given
by an antiferromagnetic insulator. This agrees for instance
with the fact that, exactly at half-filling, this model is known
to have an antiferromagnetic insulating �AFI� ground state
for any finite local interaction U. Our two-loop RG approach
therefore successfully reproduces this important aspect of the
problem.

Following this, we probe the system at a slightly larger
hole doping regime, i.e., at � / t=−0.05, which corresponds to
x�3.4%. At this regime, we obtain that the quasiparticle gap
immediately closes around the nodal directions but remains
unaffected in the antinodal regions. The complete suppres-
sion of the spectral weight only in the antinodal zones sug-
gests the existence of a NFL phase with quasiparticlelike
excitations only around the nodal directions of the Fermi
surface. From a technical point of view, this result originates
from the anisotropy in the anomalous dimension ��p� dis-
played in Eq. �2.7�. This effect is to some extent reminiscent
of the nodal-antinodal dichotomy and is in agreement with
the general observation that, at light dopings, there are no
coherent quasiparticle peaks at the antinodal points in the
pseudogap phase of underdoped cuprates. However, we point
out that the anisotropy obtained here in this work is still very
small as compared with the experimental values observed in
these materials. This is undoubtedly related to our choice of
initial interaction U=3t. If we increase the on-site interaction
of the model, we expect that this trend will be amplified
further. This conjecture finds support in recent numerical re-

sults obtained from quantum cluster approaches11 for U=8t,
where a stronger nodal-antinodal dichotomy is indeed ob-
served in the model at finite doping.

Such a NFL character is observed here until the corre-
sponding doping reaches 	�	 / t=0.08 �i.e., x�5.1%�. At this
hole doping, both the antinodal and nodal quasiparticle
weights become nonzero even when we extrapolate our RG
flow to very low  /4t scales. This indicates that the resulting
FS is fully reconstructed in this regime. Moreover, as shown
in Fig. 8�c�, we observe already the beginning of the unlim-
ited growth of the dx2−y2-wave pairing instability in the pres-
ence of the still leading s-SDW susceptibility. This mixed
d-SSC and s-SDW metallic state is observed until 	�	 / t
=0.1 �i.e., x�6.2%�. At this doping value, as indicated in
Fig. 8�d�, the d-SSC susceptibility finally overcomes the s
SDW and the system turns into a dx2−y2-wave supercon-
ductor. As a consequence, we point out that this latter result
adds further support to the possible existence of a
dx2−y2-wave superconducting state in the 2D Hubbard model
as was first obtained in Refs. 12–14 within a one-loop RG
scheme.

One important point we would like to emphasize here is
that, for doping regimes satisfying 	�	�0.08t, the dominant
fluctuations in our results are always of s-SDW type �i.e.,
antiferromagnetism�, in qualitative agreement with several
previous studies focusing on this model.10,12–14 This result
therefore favors the interpretation that the driving mecha-
nism underlying our NFL evidence should be mediated by
antiferromagnetic spin fluctuations.

We summarize our results displaying in Fig. 9 a two-loop
RG phase diagram of the 2D Hubbard model as a function of
both a critical RG scale c and the hole doping represented
by �. This phase diagram, however, must be interpreted only
qualitatively since the numerical determination of the exact
critical scale, where the order-parameter susceptibilities truly
diverge, is of course very difficult and, for this reason, is
always based on a chosen criterion. Therefore, as we saw
before, we find evidence of an extended AFI phase from
half-filling up to 	�	 / t=0.045. For 0.045� 	�	 / t�0.08, we
obtain instead that the formation of a NFL metallic phase
with a truncated Fermi surface in the nodal regions is
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FIG. 8. �Color online� The two-loop RG flows of several static
order-parameter susceptibilities for initial interaction U=3t with �a�
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FIG. 9. �Color online� Two-loop RG phase diagram for the 2D
Hubbard model as a function of the critical RG scale c and the
hole doping � for local on-site bare interaction U=3t.
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favored. For 0.08� 	�	 / t�0.1, the FS is fully restored with
the resulting metallic state displaying enhanced antiferro-
magnetic and dx2−y2-wave pairing correlations. Finally, for
	�	 / t�0.1, the system shows a dx2−y2-wave superconducting
phase. Moreover, if we suppose that it is possible to associate
the RG scale c with an effective critical temperature scale
Tc, this could in principle provide approximate estimates of
the critical temperatures for the various phase transitions dis-
played by this model obtained within our two-loop RG
scheme. Following this approach, we obtain that, for the
dx2−y2-wave superconducting phase, the highest effective
critical temperature scale displayed in our two-loop RG
phase diagram is given by the curve-fitting value c /4t
�0.004t �see inset�, which is surprisingly in qualitative
agreement with the result Tc�0.023t obtained in the litera-
ture for U=4t within quantum cluster methods.10

IV. CONCLUSION

We have analyzed the 2D Hubbard model starting from
weak-to-moderate couplings by implementing a functional
generalization of the field-theoretical renormalization group
approach up to two-loop order. Our calculations here were
mainly restricted to the limit of T→0, i.e., to the analysis of
the universal ground-state properties and its low-lying exci-
tations as a function of doping. The two-loop RG scheme
was necessary in order to discuss the effect of the
momentum-resolved anomalous dimension ��p�, which
shows up in the normal phase of the model on the corre-
sponding low-energy single-particle excitations. As a result,
we have found evidence for an extended AFI ground state in
the vicinity of half-filling. This result was particularly en-
couraging since it agrees with the fact that, exactly at half-
filling, this model is known to produce an AFI ground state
for any finite local interaction U. Our two-loop RG approach
therefore successfully reproduced this important aspect of
the problem.

For a slightly higher doping regime, we have obtained
that the formation of a NFL metallic phase with a truncated
Fermi surface in the nodal regions was favored. This effect is
originated by the anisotropy of the momentum-resolved
anomalous dimension ��p� at this regime and it is reminis-
cent, to some extent, of the nodal-antinodal dichotomy ob-
served in the pseudogap phase in underdoped cuprates. How-
ever, the anisotropy found here was still very small
compared with the experimental values observed in those
materials. This is undoubtedly related to our choice of initial
interaction U=3t. If we increase the on-site interaction of the
model, we expect that this trend will be amplified further.
Such a NFL character was observed for a finite doping range,
after which both nodal and antinodal quasiparticle weights
became nonzero even when we extrapolated our RG flow to
very low RG scales. This indicated that the resulting FS, in
this new phase, was fully reconstructed. With further doping,
the system finally developed a dx2−y2-wave pairing instability
in the low-energy limit. This suggests the formation of
dx2−y2-wave superconducting ground state sufficiently away
from half-filling. This latter two-loop RG result therefore
adds further support to the still much-debated existence of a

dx2−y2-wave superconducting phase in the 2D Hubbard model
and this is in qualitative agreement with the first results ob-
tained in Refs. 12–14 within a one-loop RG scheme.

Since our two-loop RG results have several analogies
with the observed phenomena in the high-Tc superconduct-
ors, a few remarks are in order. These materials are known to
be Mott insulators at half-filling regime. This unambiguously
implies that the strong-coupling regime should be an impor-
tant ingredient to describe quantitatively their observed prop-
erties. The main aim of this work however was not to
achieve quantitative agreement with the experimental results.
Our objective was to show that even the simplest version of
the 2D Hubbard model is rich enough to capture some of the
main features displayed by those materials. In order to de-
scribe quantitatively the experimental results of the high-Tc
cuprates, it is essential to choose initial couplings larger than
the ones considered in this work. Moreover, we should also
take into account the effects produced by next-nearest-
neighbor hoppings t� and t�. Nevertheless, it is reasonable to
expect that, at least for the interaction strengths that apply to
these compounds, the inclusion of t� and t� in the Hamil-
tonian should not alter qualitatively the low-energy dynamics
of the system. In this sense, it is reasonable to suppose that
the cuprates could be potentially associated with a universal-
ity class, which is well captured by our model. As we have
shown here, even our simple version of the 2D Hubbard
model already displays some important and nontrivial as-
pects of the physics exhibited by these materials.

On the other hand, there are still some open issues that
were not addressed in this work. How the renormalization of
the FS induced by interactions affects the RG flow is still not
considered in our RG scheme. In recent years, there has been
some progress in analyzing this problem in quasi-one-
dimensional systems.33,34 However, a two-loop RG calcula-
tion of this effect in two-dimensional systems still remains a
very difficult task and, to our knowledge, has not been cal-
culated so far. Another important aspect which deserves fu-
ture investigation concerns the actual importance of quantum
fluctuations beyond the two-loop RG level for this model.
Since three-loop RG calculations do not seem to be an easy
prospect in the near future, we can nevertheless learn a lot
about this question by comparing one-loop with two-loop
RG calculations. One important result obtained here was the
certainty that one-loop RG calculations in general tend to
overestimate the effect of fluctuations near half-filling. As a
result, our two-loop RG theory yields a better controlled ap-
proximation in the low-energy limit for this doping regime.
In addition, our results suggest that the pseudogap phase
might be indeed related to a strong-coupling regime in the
model. However, like any other strong-coupling problem in
correlated systems, it is still not easy to have full analytical
control in such case. In other words, there is still room for
improvement before one can claim to have a complete theory
for the strong-coupling regime of the 2D Hubbard model.
However, given our encouraging results so far, we believe
that our two-loop RG approach could provide a good basis
for a complementary view of this important problem starting
from a weak-to-moderate coupling perspective. Recently, we
learned about a related study in the context of the 2D t− t�
Hubbard model in Ref. 35.
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